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Abstract

Grounding language in vision is an active field of research seeking to
construct cognitively plausible word and sentence representations by
incorporating perceptual knowledge from vision into text-based repre-
sentations. Despite many attempts at language grounding, achieving an
optimal equilibrium between textual representations of the language and
our embodied experiences remains an open field. Some common concerns
are the following. Is visual grounding advantageous for abstract words, or
is its effectiveness restricted to concrete words? What is the optimal way
of bridging the gap between text and vision? To what extent is perceptual
knowledge from images advantageous for acquiring high-quality embed-
dings? Leveraging the current advances in machine learning and natural
language processing, the present study addresses these questions by
proposing a simple yet very effective computational grounding model for
pre-trained word embeddings. Our model effectively balances the inter-
play between language and vision by aligning textual embeddings with
visual information while simultaneously preserving the distributional
statistics that characterize word usage in text corpora. By applying a
learned alignment, we are able to indirectly ground unseen words includ-
ing abstract words. A series of evaluations on a range of behavioural
datasets shows that visual grounding is beneficial not only for concrete
words but also for abstract words, lending support to the indirect theory
of abstract concepts. Moreover, our approach offers advantages for con-
textualized embeddings, such as those generated by BERT (Devlin et al,
2018), but only when trained on corpora of modest, cognitively plausible
sizes. Code and grounded embeddings for English are available at∗.

∗Accepted in Behavior Research Methods Journal: https://github.com/Hazel1994/
Visually Grounded Word Embeddings 2
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1 Introduction

Where do symbolic representations of language get their meaning from? It
has been argued both from a theoretical and an empirical perspective that
knowledge is grounded in perceptual experience (Barsalou, 2008; Lakoff, 1987;
Langacker, 1999; Zwaan and Madden, 2005). Evidence for this embodied view
of knowledge comes from a range of scientific domains such as neuroimag-
ing (e.g. Simmons et al, 2005; Martin, 2007) and behavioural studies (e.g.
Goldstone, 1995; Solomon and Barsalou, 2001, 2004), showing that knowl-
edge is grounded in sensory, but also interoceptive perception and motor
action (overview in Barsalou, 2008). However, this view is not uncontested.
For example, Louwerse and Connell (2011) argue that linguistic information
suffices for more shallow processing of meaning and that perceptual, embodied
information is only accessed when deeper knowledge of a word is required.

This debate has been stimulated further by the success of meaning repre-
sentations which are based on linguistic information alone. They build on the
notion of Harris (1954) that similar words occur in similar contexts and rep-
resent each word as numerical vectors, with similarities between these vectors
reflecting similarities in words’ meanings. By now, many different methods
have been devised to generate such vectors (called “word embeddings” in Nat-
ural Language Processing (NLP) and throughout the remainder of this paper),
beginning with Hyperspace Analogue of Language (HAL; Lund and Burgess,
1996) and Latent Semantic Analysis (LSA; Landauer and Dumais, 1997), and
later, mainly in the fields of NLP and machine learning, Word2Vec (Mikolov
et al, 2013), Fasttext (Bojanowski et al, 2017) or GloVe (Pennington et al,
2014). Today, word embeddings are employed successfully in many different
areas and tasks within NLP, such as POS-tagging, named-entity recognition,
and sentiment analysis (Wang et al, 2019).

As an easily obtained representation of semantics, word embeddings are
also used in many areas of cognitive science, such as AI research, psychology
or psycholinguistics, with encouraging results (see Günther et al, 2019). From
a cognitive perspective, word embeddings have been evaluated in two ways. A
relatively direct method is to compare them to metrics obtained from brain
imaging such as fMRI or EEG. Bulat et al (2017); Hollenstein et al (2019)
showed that a variety of word embeddings (e.g. GloVe, Word2Vec, Fasttext)
correlate relatively well with such metrics. A second, more indirect, approach
uses behavioural data such as reaction times or ratings as evaluation criteria.
Mandera et al (2017) showed that word embeddings can be used to predict
semantic priming as well as word associations, similarity/relatedness ratings
and even perform well in a multiple-choice task. Further evidence in favour of
the cognitive plausibility of word embeddings has been provided by Westbury
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(2014); Westbury and Hollis (2019) who predicted familiarity and humour
ratings respectively, Marelli and Amenta (2018) who demonstrated that the
semantic relatedness of words’ orthographic neighbours is predictive for visual
lexical decision and naming latencies, Abdou et al (2021) who showed that
even color relations are accurately represented by purely textual embeddings,
as well as Louwerse and Zwaan (2009); Avery et al (2021); Gatti et al (2022)
who demonstrated that geographical locations of cities are reflected in purely
textual embeddings. Recently, embeddings have also found their way into psy-
cholinguistic models. For example, the Discriminative Lexicon Model (Baayen
et al, 2019; Heitmeier et al, 2021, 2023), a model of the mental lexicon, uses
word embeddings to represent words’ meanings. Other models also use distri-
butional information to represent semantics, either randomly generated ones
(e.g. Gaskell and Marslen-Wilson, 1997; Magnuson et al, 2020) or based on
human ratings (e.g. mir, 2008), further highlighting the need for a large set
of psychologically valid word embeddings. However, the cognitive plausibility
of mechanisms generating word embeddings such as Word2Vec has not gone
unchallenged (Mannering and Jones, 2021).

While the success of textual embeddings has nevertheless led some
researchers to believe that meaning can be fully, or at least to a large extent,
be derived from language alone (Landauer, 1999), the wide range of empirical
evidence in favour of a grounded view of knowledge representation and cogni-
tion has sparked the search for representations that are informed not only by
text, but also by vision and other modalities (see also Andrews et al, 2014).

Therefore, a number of previous studies have tried to improve word embed-
dings by using available data similar to text corpora. Some studies have tried
to extract meaning representations exclusively from visual information (usu-
ally images). The resulting visual word embeddings have been found to be
very good models of human perceptual behaviour (e.g. Zhang et al, 2018),
but success at predicting other behavioural data was more mixed, with some
reporting positive (Lüddecke et al, 2019; Bulat et al, 2017) and others negative
results compared to textual embeddings (e.g. Peterson et al, 2017; De Deyne
et al, 2021; Rotaru and Vigliocco, 2020; Utsumi, 2022). The more promis-
ing approach has been to ground textual embeddings in vision, i.e. to include
visual information with textual embeddings. The resulting embeddings are
usually referred to as multimodal embeddings. This approach is especially
promising because textual and visual representations seem to carry different
kinds of information (Petilli et al, 2021; Andrews et al, 2014). Multimodal
embeddings have been successful in a range of areas. They have been shown
to correlate better than purely textual embeddings with human similarity/re-
latedness judgments and concept categorization. Bulat et al (2017); Anderson
et al (2015) found that they are better at predicting brain activity than purely
textual embeddings. Moreover, they are useful in modelling the learning of
novel words’ meanings in both children and adults (Lazaridou et al, 2016,
2017). Finally, they have been shown to improve performance in a number of
classification tasks in NLP (Bordes et al, 2019).
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Several approaches to obtaining multimodal embeddings are available. We
restrict our discussion here to approaches combining textual and visual infor-
mation, but a body of work has also explored the integration of emotional (e.g.
Rotaru and Vigliocco, 2020), sensory (e.g. Johns and Jones, 2012), auditory
(Kiela and Clark, 2015) and olfactory (Kiela et al, 2015) information. Early
approaches gleaned visual information from human ratings, e.g. by utilising
data collected in the ESPGame dataset (Von Ahn, 2006), or used “Bag-of-
Visual-Word” approaches where images are chunked into small pieces to form
a kind of visual vocabulary (e.g. in Anderson et al, 2015). More recently, fea-
ture vectors have been extracted directly from computer vision models (see
Baroni, 2016, for a review).

Subsequently, the visual information needs to be combined with textual
information. Baroni (2016) differentiates between two approaches: cross-modal
mapping and multimodal fusion. Cross-modal mapping approaches to ground-
ing textual in visual information aim to map between one and the other, in an
attempt to account for how vision could be translated into language or vice
versa (Baroni, 2016). An early model inferring perceptual embeddings by link-
ing words using distributional semantics is Johns and Jones (2012). They used
feature norms from McRae et al (2005) to model perceptual representations.
For words for which no feature norms were available, they inferred these by
first computing the similarity of the target word with all words for which fea-
ture norms were available using distributional semantics, and then computed
a weighted average of their feature norms. After having inferred feature norms
for all words, they repeated the process in a second step, this time taking
into account all words, rather than only those for which feature norms were
available originally. A more recent proposal for connecting textual and visual
embeddings by means of a simple linear mapping can be found in Günther
et al (2022).

On the other hand, multimodal fusion (Baroni, 2016) aims to combine
textual and visual information into a single representation. The simplest exam-
ple for multimodal fusion is concatenation, as is often used when multimodal
embeddings are explored in cognitive science and psychology (e.g. Utsumi,
2022; Rotaru and Vigliocco, 2020). However, there are also more sophisticated
approaches from the realm of NLP: Some approaches apply feature-level fusion,
combining image features with textual word embeddings (after obtaining both
separately) with methods such as Singular Value Decomposition (SVD) or
Gated Recurrent Units (GRU) (Cho et al, 2014b; Bruni et al, 2014; Kiela and
Bottou, 2014; Kiros et al, 2018). Others learn multimodal word representations
in a joint feature space defined by a specific criterion (known as loss function)
between modalities, for example by using auto-encoders (Silberer and Lapata,
2014; Hasegawa et al, 2017) or Long-Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) networks (Kiela et al, 2018; Chrupa la et al, 2015).
Recently, new approaches based on modality alignment have emerged. Here,
vision and language are treated separately (as opposed to having both in a
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shared space) but the textual embeddings are aligned with image features
(Shahmohammadi et al, 2021; Bordes et al, 2019).

Fig. 1: Our model constructs visually grounded embeddings (right) from
textual embeddings (left) by applying a learned alignment (M) trained on
a subset of 10,000 words in image-caption pairs. It then generates zero-shot
grounded embeddings at the inference phase for a total of 2,000,000 words,
including not only concrete words but also abstract words. For each query
word (in black), the grounded embeddings (right) retrieve more similar words
compared to the purely textual embeddings (left) and alleviate the bias toward
dissimilar words with high co-occurrence frequencies such as (many, people).
Out of the top 10 nearest neighbors for each query word, only the differing
neighbors between the textual embeddings and the grounded embeddings are
shown in the right-hand panel.

In the present work we make use of recent advances in machine learning,
computer vision and NLP to propose a new method of computing multimodal
embeddings via multimodal fusion (Baroni, 2016). Our approach falls into
the latter category of grounding models where rather than projecting textual
and visual embeddings into the same space, textual embeddings are slightly
adjusted to reflect information gleaned from images (see Figure 1). Our model
is able to generalise to new words without a visual representation, which allows
it to generate grounded embeddings not only for concrete words for which
images are available but also for abstract words, extending earlier work such
as Johns and Jones (2012); Utsumi (2022) while making use of more recent
insights from NLP. We compare our model to both ungrounded embeddings
as well as embeddings based on other grounding methods and show that our
model is more predictive for responses in a range of behavioural datasets such
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as similarity/relatedness judgements (e.g. MEN, Bruni et al, 2014) which have
been used in previous work to evaluate word embeddings from a psycholin-
guistic perspective (Mandera et al, 2017). Our grounded embeddings are made
available to the community.1

Our grounded embeddings allow us to explore various questions which arise
from previous work on grounding and generating distributed meaning repre-
sentations in general, and which are crucial when aiming to model cognitively
plausible meaning representations:

1. On the one hand, many studies have shown that combining visual informa-
tion and textual information is attractive from a theoretical point of view
(e.g. Andrews et al, 2014; Lake and Murphy, 2021) and indeed improves
the quality of word embeddings (e.g. Bruni et al, 2014; Shahmohammadi
et al, 2021; Lazaridou et al, 2016). On the other hand, purely textual
embeddings are very successful even on tasks related to vision and spatial
relations (Louwerse and Zwaan, 2009; Abdou et al, 2021), and purely visual
embeddings do not perform well at predicting human similarity judgments
(e.g. De Deyne et al, 2021). Hence, the extent to which textual represen-
tations benefit from visual grounding, as well as the specific tasks and
methods that are most effective, remains an open question. Apparently,
a fine balance has to be struck between too much and too little visual
information in grounding. A number of studies has attempted to explore
this question from both a more technical, engineering perspective, but also
from a cognitively motivated perspective. For instance, Hill and Korhonen
(2014); Rotaru and Vigliocco (2020) found that how beneficial perceptual
information is for resulting embeddings depends on the concreteness of
the words: the more concrete the words are, the more they profit from
perceptual information. We will explore to what extent perceptual knowl-
edge from images is beneficial for acquiring high-quality and cognitively
plausible embeddings, using a more modern grounding architecture.

2. Traditionally, embeddings are grounded on a single word basis (e.g. Günther
et al, 2022; Kiela and Bottou, 2014; Bruni et al, 2014). However, visual
scenes are complex, and are usually best described not by single words, but
rather by entire sentences. Equating complex scene structures with isolated
words is not only counter-intuitive but also problematic when ground-
ing abstract words since highly abstract words (e.g., justice) are rarely
depictable. It is known that language is vital for representing abstract con-
cepts (Borghi et al, 2017; Dove, 2018). However, the interplay between
language and perceptual experiences is still an open field. How do language
and embodied experience together shape our understanding of abstract and
concrete concepts? We will design various experiments to explore how lan-
guage (here represented as word representations) and vision (images) should
interact.

1https://github.com/Hazel1994/Visually Grounded Word Embeddings 2

https://github.com/Hazel1994/Visually_Grounded_Word_Embeddings_2
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3. There exist multiple theories of how words are grounded in perceptual
experiences (Paivio, 1971; Borghi et al, 2019; Howell et al, 2005). Nonethe-
less, large scale grounding of abstract words into vision is still an open field.
More specifically, the question still remains: how should abstract words be
grounded in computational models on a large scale? In line with the theory
of indirect grounding (Howell et al, 2005; Louwerse, 2011), we propose a
large-scale grounding method2 to effectively ground abstract words.

4. Newly proposed large-scale contextualized language models rely on enor-
mous amounts of data (e.g., BERT: Devlin et al, 2018). While this leads
to good performance, it is cognitively implausible, as humans encounter
only a much smaller number of words over their lifetimes (Brysbaert et al,
2016). Our fourth question therefore relates to whether visual grounding is
equally helpful when large amounts, or only small amounts, of training data
are available: How much does the amount of training data influence the
improvement of visual grounding on downstream tasks such as sentiment
analysis? We will demonstrate that on corpora sizes closer to human-scale
training data, visual grounding improves the quality of embeddings even on
highly abstract tasks.

To this end, our paper is structured as follows. Sections 2 and 3 introduce
our method, which is evaluated in Section 4. In Sections 5 and 6 we will
address the first two aforementioned research questions. Furthermore, we will
investigate the impact of grounding on task performance, specifically in state-
of-the-art language processing models, with respect to the available training
data in Sections 7 and 8.

2 Visually Grounded Word Embeddings

In this section, we explain our visual grounding approach and how it can be
used to generate visually grounded word representations from textual word
embeddings. For (Sj , Ij) ∈ D, let Sj = [w1, w2 · · ·wn] be a textual caption
with n words describing its corresponding image with the image vector Ij in
the dataset D. The image vector Ij is obtained by feeding the image into a
pre-trained convolutional neural network (CNN) model. A CNN is a family
of neural networks designed for processing images with a grid-like topology
that extracts local information and aggregates them through multiple layers of
learnable parameters. CNNs are usually trained on a large set of images anno-
tated by human raters to classify images into many classes (e.g., dog, horse, and
car). Once they are trained, they can be used to encode images into dense and
meaningful numerical representations that correspond well to human intuitions
(Bracci et al, 2019; Lazaridou et al, 2017). Let ti ∈ Rd be a textual embedding
of the word wi, which has been obtained by a pre-trained word embedding
model Te : wi 7→ ti (e.g., Fasttext). The goal is to learn a linear mapping M to

2Please note that our model is not a cognitive model. However, our findings provide substantial
support for the indirect grounding theory.
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Fig. 2: Our visual grounding model encodes each caption word by word, using
an LSTM, given the task to predict the corresponding image vector. A mapping
M is set up that takes textual vectors and maps them into the grounded space.
This mapping is trained on a limited number of words (those that occur in the
captions) but is then applied to all the words, after the training is completed,
to generate “zero-shot” (unseen) grounded embeddings. The snowflake icon
indicates the frozen learning parameters during training.

visually ground any textual word vector ti in its corresponding image vector
Ij and obtain the visually grounded embedding gi ∈ Rc of the word wi. The
learned mapping M will linearly adjust the textual word embeddings based
on the information in images. This mapping ideally should: a) preserve the
abstract knowledge from co-occurrence statistics captured by textual embed-
dings trained on large textual corpora, and b) align the textual embeddings
with their corresponding visual properties available in images. This way, the
grounded embeddings will benefit both concrete and abstract words (Shahmo-
hammadi et al, 2021). While it may seem intuitive to learn both modalities
in a shared feature space, we argue that such approaches, unfortunately, are
more likely to cause the grounded embeddings to lose the abstract knowledge
from textual co-occurrences and therefore suffer from a bias towards concrete
words as reported by Park and Myaeng (2017).

It is widely acknowledged that language plays a crucial role in acquiring
abstract concepts (Borghi et al, 2017; Dove, 2018). Therefore, we believe that
preserving abstract knowledge during the grounding process requires indi-
vidual words to be aware of the context (other words in the sentence). The
grounding process should also respect the textual vector space as any random
change to textual embeddings will distort the semantic information obtained
by textual statistics (Shahmohammadi et al, 2021). Figure 2 lays out the
architecture of our proposed grounding model. The grounded version of any
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word wi is obtained by mapping its textual embedding ti into the visually
grounded space using the linear mapping M as gi = ti ·M . In the grounded
space word vectors are aligned with the images by using a one-layer Long
Short-Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997).
The LSTM network is a type of recurrent neural network that is suitable for
text processing, it processes a sequence of words in a text word by word and
at each step updates its internal learning parameters. The LSTM encodes the
whole sentence Sj as a single vector hn:

hn = LSTM(G, c0, h0 | θ), (1)

where G denotes the input — all the grounded word vectors (output of M) —
and θ the learning parameters. It also includes a cell state ct and a hidden state
ht where t denotes the current time-step (the current word being processed).
At first, the network is initialized with a random hidden and cell states (h0 and
c0) and takes one word at each time-step (see Figure 2) and each time, for each
successive word, it updates its memory by removing and adding information to
the cell state. It then generates an output ht based on the current input gt and
ct. Both ht and ct are passed to the next time-step. We extract the output of
the last time-step hn as a vector representing the whole sentence. The model is
trained to match hn to the image vector Ij for each particular training sample
(Sj , Ij) ∈ D. We optimize the parameters of the LSTM and the mapping M
(denoted as Θ) based on the following mean-squared-error (MSE) loss:

Θ̂ = argmin
Θ

1

N

n∑
t=1

(yt − ŷt)
2, (2)

where y and ŷ denote the ground truth image vector (Ij) and the predicted
image vector (hn) respectively. By applying the LSTM network, the model
takes into account the context in which each word occurs. Therefore, the whole
sentence is mapped to the image vector. Since the model tries to predict an
image vector, it will change the textual vector space such that the image vector
is estimated as accurately as possible. Nonetheless, we restrict the influence of
the images on the word vectors by keeping the mapping M linear. Naturally,
the grounded word vectors (output of M) will still respect the textual vector
space but they will be indirectly aligned to the image representations.

After training the model on (caption, image) pairs, the mapping M can
be used to indirectly ground both abstract and concrete words including out-
of-vocabulary words. For instance, for obtaining the visually grounded vector
of the word sad, we first fetch its textual vector tsad using the pre-trained
textual embeddings. The grounded vector is then obtained by using the learned
mapping M as gsad = tsad · M , where gsad indicates the visually grounded
version of the word sad . In this way, a visually grounded version of the textual
embeddings is created in a zero-shot manner (including unseen words) despite
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being exposed to only a limited number of words while training on image
captions.

3 Implementation Details

We used the Microsoft COCO 2017 dataset (Lin et al, 2014) in our experiments.
Each sample of this dataset includes a single image along with 5 different
human-generated captions (Chen et al, 2015). The whole dataset was divided
into 118k train and 5k validation samples. We set the batch size to 256 with
each batch containing 256 image vectors (of dimension 2048) along with one
of their corresponding captions. Image vectors were extracted from the penul-
timate layer of a pre-trained Inception-V3 CNN model (Szegedy et al, 2016),
based on ImageNet (Deng et al, 2009). We set the dimension of the grounded
embeddings (output of M) to 1024, following Shahmohammadi et al (2021).
A one-layer LSTM was applied with 2048 units. We removed the punctuation
marks from the captions and converted all words to lowercase. Only the top
10k most frequent words in the captions were used and the rest were ignored.
Reducing the number of processed words is a common practice in NLP, as
many words occur rarely in the training corpus and therefore make a negligible
contribution to the learning process. We trained the model for 20 epochs (20
iterations on the whole dataset) with 5 epochs tolerance early stopping, using
the NAdam optimizer (Dozat, 2016) with a learning rate of 0.001. Early stop-
ping is a technique to prevent a model from overfitting to the training data
by stopping the training process once the model’s performance on a validation
dataset stops improving. In our setup, we train the model until its validation
score decreases for five consecutive epochs, after which the training process is
halted using early stopping.

Both the pre-trained textual embedding Te and the Inception-V3 model
are frozen — weights are kept fixed — during training. Two popular pre-
trained textual word embeddings, GloVe (crawl − 300d− 2.2M − cased) and
Fasttext (crawl−300d−2M−SubW ), were used to initialize the embedding Te.
Therefore, we generated two sets of grounded embeddings, one from Fasttext
and one from GloVe.

4 Evaluation

In this section, we develop several evaluation techniques to study the behav-
ior of visually grounded embeddings and address the initial question of
how much and in what specific applications perceptual information from
images contributes to the creation of high-quality and cognitively plausible
embeddings.

4.1 General Evaluation

The question of how to appropriately evaluate word embeddings persists,
despite the existence of numerous evaluation benchmarks (Wang et al, 2019).
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However, in both psycholinguistics and NLP, humanly annotated lexical
semantic similarity or relatedness datasets are commonly used to evaluate
(multi-modal) embeddings (Mandera et al, 2017; Rotaru and Vigliocco, 2020;
De Deyne et al, 2021; Park and Myaeng, 2017). Here, the task is to estimate
the similarity/relatedness score of a given pair of words with the Spearman
correlation as evaluation metric. Relatedness is based on topical match which
quantifies the degree to which two words are associated with each other
(child -play). Similarity is based on taxonomic closeness which is a subset of
relatedness and quantifies how alike two words are (car -automobile). It is
worth noting that some datasets do not distinguish between similarity and
relatedness. For example, the pair (clothes, closet) comes with the score of
1.96 (out of 10) in SimLex999, but exactly the same pair receives a score
of 8.00 in WordSim353, which does not distinguish between similarity and
relatedness. We assess the quality of our visually grounded word represen-
tations using the following datasets and juxtapose the results with textual
embeddings and related previous works.

MEN (Bruni et al, 2014): This dataset is compiled specifically for the pur-
pose of evaluating multi-modal models. It only contains words that appear as
image labels in the ESP-Game3 and MIRFLICKR-1M164 datasets. Therefore,
it is suitable for multi-modal assessments. MEN consists of 3,000 word pairs
with semantic relatedness ratings obtained via Amazon Mechanical Turk. For
example, (sun, sunlight) has a MEN score of 50 (out of 50) but the score of
(zebra, bakery) is 0.
WordSim353 (Finkelstein et al, 2001): This collection contains 353 word
pairs annotated by 13 to 16 human judgments for each pair. The judges did
not distinguish between similarity and relatedness. For instance, (computer,
keyboard) comes with a score of 7.62 (out of 10).
SimLex999 (Hill et al, 2015): Unlike WordSim353, SimLex999 draws a clear
distinction between similarity and relatedness as mentioned above. SimLex999
contains 999 word pairs annotated by 500 annotators via Amazon Mechanical
Turk. Both WordSim353 and SimLex999 have been used for explaining human
performance in psycholinguistic tasks (Mandera et al, 2017).
Rare-Words (RW, Luong et al, 2013): This dataset measures the perfor-
mance of a word-embedding model on rare words that occur less frequently
(based on Wikipedia). It contains 2034 word pairs annotated by 10 human
judges. Examples of words in this collection are interjection and behaviorist.
MTurk771 (Halawi et al, 2012): MTurk771 consists of 771 word pairs. The
authors used WordNet5 to extract both related and unrelated word pairs and
collected 20 human ratings for each word pair.
SimVerb3500 (Gerz et al, 2016): This dataset provides human ratings for the
similarity of 3,500 verb pairs. Providing broad coverage of verbs, this dataset

3http://www.cs.cmu.edu/∼biglou/resources/
4https://press.liacs.nl/mirflickr/
5https://wordnet.princeton.edu/

http://www.cs.cmu.edu/~biglou/resources/
https://press.liacs.nl/mirflickr/
https://wordnet.princeton.edu/
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offers a great resource for a better understanding of “the complex diversity of
syntactic-semantic verb behaviours” (Gerz et al, 2016, p. 2174).

Model RW MEN WSim MTurk SimVerb SimLex Mean
353 771 3500 999

GloVe 45.5 80.5 73.8 71.5 28.3 40.8 56.7
ZSG-G (ours) 53.2 ***85.1 ***78.8 ***73.2 ***38.5 ***52.6 63.6
Fasttext 56.1 81.5 72.2 ***75.1 37.8 47.1 61.6
ZSG-F (ours) ***57 ***84.4 72.3 74.5 ***39.6 ***49.6 62.9
VGE-G 52.6 85.1 **78.9 ***73.4 37.4 51.8 63.2
ZSG-G (ours) **53.2 85.1 78.8 73.2 ***38.5 ***52.6 63.6
Cap2Both 48.7 81.9 71.2 46.7
Cap2Img 52.3 84.5 75.3 51.5
Park & Myaeng 83.8 77.5 58.0
P&M VG. 15.7
Collell et al. 81.3 28.6 41.0

Table 1: Comparison of our grounded embeddings (ZSG-*) to textual embed-
dings and other visually grounded embedding models. Our embedings show
stronger correlation with human ratings on most of the datasets. The metric is
Spearman’s ρ× 100. Number with stars indicate statistically significant differ-
ences (p < 0.05 ∗; p < 0.01 ∗ ∗; p < 0.001 ∗ ∗∗, t-tests) between our grounded
embeddings (ZSG-G) and textual (GloVe or Fasttext) or VGE-G embeddings.

Table 1 shows the evaluation results on lexical semantic benchmarks. Our
zero-shot grounded embeddings are shown as ZSG-G and ZSG-F indicating
the grounded versions of GloVe and Fasttext respectively. The initial segment
of the table demonstrates that ZSG-G exhibits superior efficacy compared to
textual GloVe across all benchmarks. In the case of Fasttext on the other hand,
improvements are somewhat more modest, probably because Fasttext takes
into account sub-word information.That is, it takes advantage of the internal
structure of a word to improve vector representations. For instance, the word
vector of eating might be a combination of the eat and ing. Hence, it might cap-
ture word similarity/relatedness better compared to GloVe which treats each
word as a unique item. In the lower part of the table, we compare the perfor-
mance of our best model (ZSG-G) with related visually grounded embedding
models. For a fair comparison, we limit our list to those who adopted pre-
trained word embeddings. Shahmohammadi et al (2021) (shown as VGE-G in
the table) proposed a similar grounding approach to ours where they train a lin-
ear mapping to transfer from textual word representations to visually grounded
representations. However, the main difference with our approach is the train-
ing scheme of the mapping. While we only train using a single task (predicting
the associated image vector given its caption), multi-task training with 3 dif-
ferent tasks is adopted in their approach. In their setup, the model generates
the corresponding caption word by word for a given image vector in both
forward and backward directions. Furthermore, the model receives pairs of cap-
tions and images as inputs and learns to discriminate between matching and
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non-matching pairs. While inspired by their method, our approach is simpler,
requires less computational power, and performs slightly better on the same set
of benchmarks. Kiela et al (2018) also proposed a visual grounding approach
for pre-trained textual word representations (GloVe), by using the same image
database as ours. Similar to Shahmohammadi et al (2021) their approach is
based on multi-task training where the following tasks have been proposed:
Cap2Img: predicting the image vector from its caption; Cap2Cap: generating
an alternative caption of the same image; Cap2Both: training by Cap2Cap
and Cap2Img simultaneously. Our approach, despite its simplicity, captures
the semantic relationships of words much better compared to Cap2Both and
Cap2Img. Next, we compared our results with polymodal embeddings by Park
and Myaeng (2017). In this approach, the meaning of each word is derived
from six different types of distinct embeddings including linear context, syn-
tactic context, visual perception, cognition, emotion, and sentiments based
on the human cognitive model proposed by Maruish and Moses (2013). Even
though their approach uses more resources including two pre-trained embed-
dings (Word2Vec, GloVe) and incorporating other modalities, ours is still
superior on MEN and WSim353, albeit worse on Simlex999. The large perfor-
mance gap observed for SimLex999 may be attributed to the multi-modality
training of the model conducted by Park and Myaeng (2017). Employing solely
their visually grounded embeddings (P&M VG) results in low-quality word
vectors, further confirming that their visually grounded embeddings do not
benefit abstract words (Park and Myaeng, 2017).

For further consolidation, we calculated the t-test6 (Student, 1908) between
the predictions of textual and grounded embeddings for both GloVe and Fast-
Text and compared the results of our grounded GloVe (ZSG-G) with the
previous VGE-G by Shahmohammadi et al (2021) (denoted as *, **, or ***
in Table 1). All the improvements over the textual embeddings were found to
be statistically significant with the exception of RW dataset using GloVe. The
differences in performance between our embeddings and VGE-G were found
to be significant across all the benchmarks.

In summary, our approach while trained on a limited number of words
available in image captions, creates visually informed word representations,
even for unseen words, that are more aligned with human judgment across a
wide range of human-rated word similarity and relatedness tasks.

4.2 Fine-Grained Evaluation on Concrete and Abstract
Words

In linguistics, concrete words7 refer to physically real and perceptible entities
such as tree, ball, or Chris, whereas abstract words have references that are
not readily perceptible to the senses, and are more complex and variable in

6https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest ind.html
7We assume individual words, as they are realized in English writing conventions, are the verbal

expression of lexical concepts in language, and thus the terms “word” and “concept” are used
interchangeably in this section.
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meaning, including mental states (e.g., happiness), events (e.g., encounter),
conditions (e.g., totalitarianism), relations (e.g., brotherhood) and so forth
(VandenBos, 2015; Borghi and Binkofski, 2014; Barsalou et al, 2018; Davis
et al, 2020). Concreteness and abstractness are not binary properties of words
(Wiemer-Hastings et al, 2001). Words become increasingly abstract as they
are more separated from physical entities and more linked to mental states
(Barsalou, 2003). Word concreteness indicates the degree to which a word
denotes a perceptible entity and is measured on a numerical scale by subject
ratings (Brysbaert et al, 2014). For example, the word pancake is ranked high
on the scale as it is associated with many sensory properties such as smell,
taste, shape, color, etc.

Extensive evidence from behavioral experiments suggests that there is an
advantage in cognitive processing of words for concrete over abstract words—
often referred to as the “concreteness effect”. It has been shown that concrete
words, compared to abstract words, are processed faster in isolation (Schwa-
nenflugel and Shoben, 1983) and non-supportive contexts (Schwanenflugel and
Stowe, 1989), are remembered better in paired associative learning (Paivio,
1965) and free recall tasks (Schwanenflugel et al, 1992), and are learned faster
(Mestres-Missé et al, 2014). Evidence has been put forward for this distinction
in the brain. Case reports of patients with brain damage demonstrate differen-
tial impairments with regard to abstract and concrete concepts (Breedin et al,
1994; Tyler et al, 1995; Warrington, 1975). Neuroimaging studies provide evi-
dence for overlapping but distinct brain areas engaged in the processing of
abstract and concrete concepts (see Montefinese, 2019, for a review).

To investigate the influence of grounding on abstract and concrete words,
we leverage the SimLex999 dataset. It divides its words into different cat-
egories including adjectives, nouns, verbs, concreteness quartiles (from 1
to 4 increasing the degree of concreteness), and ‘hard’ sections. The ‘hard’
section includes the 333 most associated word pairs in the University of South
Florida Free Association Database (USF) (Nelson et al, 2004). This subset
of SimLex999 is reported to be the hardest for semantic models to capture
because the noise from the high association makes it hard to distinguish
between similarity and relatedness (Hill et al, 2015). Examples of this cat-
egory are happy-cheerful and weird-strange. Table 2 shows our fine-grained
evaluation on SimLex999. We compared our fine-grained results with that
of Picturebook, another kind of visually grounded embeddings (Kiros et al,
2018). For each word, Picturebook retrieves the top-k images using image
search. The retrieved images are then passed through a CNN trained with
a semantic ranking objective with 100+ million images (Wang et al, 2014).
The grounded embedding of each word is computed based on a combination
of image vectors and the pre-trained GloVe embedding of that word. Our
best model (ZSG-G) captures semantic relationships much better compared
to other visually grounded embeddings and generalizes across different word
types. For example, it not only demonstrates a more pronounced association
with highly concrete (Conc-q4) words by a margin of 19.2 percentage points,
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but also with highly abstract words (Conc-q1) by a margin of 11.3 percent-
age points compared to the textual GloVe vectors. In contrast, PictureBook
(Kiros et al, 2018), for example, highly benefits the more concrete words but
adversely affects the more abstract category even when combined with GloVe
embeddings. In comparison with VGE-G by Shahmohammadi et al (2021),
our model again achieves better results while being much simpler and less
computationally expensive.

Model All Adjs Nouns Verbs Conc-q1 Conc-q2 Conc-q3 Conc-q4 Hard
GloVe 40.8 62.2 42.8 19.6 43.3 41.6 42.3 40.2 27.2
VGE-G 51.8 72.1 52.0 35 53.1 54.8 47.4 56.8 38.3
ZSG-G (ours) 52.6 73.8 53.1 34.6 54.6 53.9 48.1 59.2 39.3
Picturebook 37.3 11.7 48.2 17.3 14.4 27.5 46.2 60.7 28.8
Picturebook+GloVe 45.5 46.2 52.1 22.8 36.7 41.7 50.4 57.3 32.5

Table 2: SimLex999 (Spearman’s ρ×100) results. Conc-q1 and Conc-q4 indi-
cate the most abstract and concrete words respectively. Our model (ZSG-G)
demonstrates stronger associations with human annotators’ similarity ratings
on multiple categories.

We further extended the analysis of abstract and concrete words by using
all the word similarity/relatedness datasets. For this aim, we first combined
all the datasets (see Section 4) after normalizing the score of each dataset.
That is, we transformed the scores to be in the range of [0, 1] as follows:

xin =
xi −min

max−min
, where xin and xi indicate the new score and the original

score of the ith word pair respectively. max and min denote the maximum
and minimum scores within the given dataset. After normalizing and combin-
ing all the benchmarks we obtained 10657 word pairs. We then ranked all the
word pairs based on a concreteness rating dataset compiled by Brysbaert et al
(2014). This dataset contains 37k words and 3k two-word phrases rated by
over 4,000 subjects using the Amazon Mechanical Turk (MTurk) crowdsourc-
ing platform. We denote this dataset as MTurk40k. We took the intersection
between MTurk40k and our combined dataset which resulted in 8936 word
pairs with both similarly/relatedness and concreteness scores. We refer to this
dataset as WCR (word concreteness rating) for simplicity. The concreteness
score of a word pair was obtained by taking the average scores of its constituent
words. Examples of highly abstract and concrete word pairs from WCR are
(belief, purpose) and (apple, lemon) respectively. Having access to a large set
of word pairs with concreteness scores, we can more thoroughly assess the
behavior of visual grounding on abstract and concrete words. To accomplish
this, we devised a new experiment that draws upon the WCR dataset.
Concreteness vs Abstractness: We computed a similarity score between
each pair of the WCR dataset by applying the cosine similarity to the corre-
sponding word vectors and used the Spearman correlation as the evaluation
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metric. We evaluated both the textual (GloVe) and visually grounded embed-
dings on four distinct subsets of the WCR with different concreteness scores.
Concreteness subsets are obtained by the following steps.

Fig. 3: Comparision between textual and grounded embeddings of word pairs
with different concreteness scores. Visually grounded embeddings highly ben-
efit abstract concepts. x >= σ and x <= −σ indicate highly concrete and
highly abstract words accordingly.

1. To account for variations in concreteness scores, a standardization proce-
dure is applied whereby scores are transformed into a standard normal
distribution. Specifically, this involves subtracting the mean from all scores
and dividing by their standard deviation, resulting in a standardized score

xis for the ith word pair, expressed as xis :
xin − µ

σ
.

2. After standardization, the distribution is partitioned into four segments
based on the standard deviation and mean values, namely [−σ, µ, σ]. The
placement of word pairs within these segments allows for the differentiation
of concrete and abstract word pairs. Specifically, pairs with higher con-
creteness scores are more likely to fall on the right side of the distribution
(x > µ), while those with lower scores are more likely to be located on the
left side of the distribution (x < −µ).

Results are shown in Figure 3. Visual grounding leads to improved quality of
textual embeddings regardless of the degree of concreteness. While the embed-
dings capture the meanings of concrete words more accurately in general, the
improvement is more significant for highly abstract words (x <= −σ). To
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(a) abstract subset (x < −σ) (b) concrete subset (x > σ)

Fig. 4: Dataset proportions for the highly abstract and highly concrete subsets
of word pairs.

investigate the potential cause of higher improvements for abstract words,
we plotted the datasets’ proportions of highly concrete words and highly
abstract words in Figure 4. Highly abstract word pairs are dominated by
the SimVerb3500 dataset, which seems to be the hardest for the textual
embeddings to model (see Table 1). Highly concrete word pairs on the other
hand mostly originate from the MEN benchmark, perhaps unsurprisingly,
as it was compiled from image labels. The textual embeddings perform the
best on this benchmark. Our finding is in line with previous works indicating
that the meaning of concrete words is more stable and reliable compared
to abstract words across different textual word embeddings (Pierrejean and
Tanguy, 2019).

Concreteness Separation: Thus far, our findings demonstrate that the use
of visual grounding leads to an improvement in the quality of embeddings for
both concrete and abstract words. It is reasonable to assume that this is due to
the grounding process creating a clearer separation between these two types of
words. We carried out the following experiments to see whether this hypothe-
sis holds true. We conducted training and assessment of two regression models
by employing 10-fold cross-validation on the MTurk40k dataset, which is a
concreteness rating dataset assembled by Brysbaert et al (2014). The models
utilized in this experiment included a straightforward linear regression and
a multi-layer perceptron (MLP). The architecture of the MLP incorporated
two hidden layers with 512 and 100 neurons, respectively. The models were
given word representations as input and trained to predict the standardized
concreteness scores.8. Additionally, batch normalization (Ioffe and Szegedy,
2015) and dropout (Srivastava et al, 2014) techniques were integrated into the
MLP model for better generalization. Dropout is a regularization technique

8https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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to prevent overfitting by randomly dropping out (setting to zero) some neu-
rons during training. Batch normalization improves the stability and speed of
training by normalizing the inputs to each layer. Reported in Table 3, the dif-
ference between GloVe and our grounded embeddings (ZSG-G) is very subtle.
This shows that visual grounding, as implemented in our model, does not nec-
essarily cause stronger discrimination between concrete and abstract words.

Model GloVe 10-fold-score ZSG-G 10-fold-score
Linear regression 84.90 84.70
Multi-layer-perceptron 88.86 88.24

Table 3: Mean Spearman’s correlation coefficient ×100 on MTurk40k using
10-fold-CV. Visually grounded embeddings (ZSG-G) do not seem to sepa-
rate concrete and abstract words better in comparison to textual embeddings
(GloVe).

Nearest Neighbors: For further exploration, we juxtaposed a sample of
differing nearest neighbors of our best embeddings (ZSG-G) with its purely
textual version (GloVe). Figure 1 shows the results for two random samples of
highly abstract and highly concrete words in SimLex999. While GloVe retrieves
related words (shown on the left), our grounding shifts the focus toward simi-
larity and retrieves highly similar words for both concrete and abstract queries
(shown on the right). We can observe that GloVe suffers from a bias toward the
dissimilar words that frequently co-occur such as (many, people) and (sorta,
weird). Our embeddings, on the other hand, alleviate this bias by creating
more refined clusters of words. Even though our alignment is trained with
mostly concrete words, the resulting vector space also benefits abstract words.
In other words, abstract words are grounded indirectly via a learned mapping
trained with concrete words. These findings align with the perspective of indi-
rect grounding, which posits that concrete words are directly grounded while
abstract words are indirectly grounded through language (Howell et al, 2005;
Louwerse, 2011; Hoffman et al, 2018). Indirect grounding of abstract words
has recently shown promising results in predicting abstract concepts using dis-
tributional semantic models (Utsumi, 2022). Moreover, different typos of the
same word such as ‘peope’ and ‘poeple’ (for people) occur with different fre-
quencies in different contexts. Therefore, they are gradually pulled apart. Our
model, however, puts them back into the same vicinity of space by applying
the learnt alignment.

5 Alignment vs Fusion

In this and the subsequent section, we will conduct new experiments that
manipulate the relationship between language and vision. These experiments
will contribute to gaining deeper insight into the second question raised:
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how might language and embodied experiences work together to shape our
comprehension of words? As the first step, various scenarios in which visual
information could enhance textual word vectors are explored. In other words,
we are interested to see whether increasing the influence of images on word vec-
tors results in better grounded word vectors. For this aim, we train our model
(ZSG-G) with different activation functions for the mapping M . Using a non-
linear activation function such as ReLU and Leaky-ReLU (Xu et al, 2015) and
adding more non-linear layers will allow the model to drastically deform the
textual vector-space beyond linear transformations, increasing the influence of
images on grounded word vectors. Table 4 shows the results with different num-
bers of layers and non-linear activation functions. We measure similarity and
relatedness by evaluating on MTurk771 and SimLex999, as they are compiled
for similarity and relatedness respectively. Leveraging from different categories
in SimLex999, we also evaluate on highly abstract and highly concrete words.
Furthermore, for each case, we evaluate the obtained word vectors on all of
the available datasets mentioned in Table 1. As shown in Table 4, we observe
a consistent pattern of losing abstractness and gaining concreteness when non-
linear transformations are used. This is to be expected, since word vectors are
morphing into image vectors and hence gain concrete properties. Employing
two consecutive Leaky-ReLU is a prominent example of this case. Results on
similarity and relatedness show that visual grounding shifts the focus toward
similarity (see also Figure 1). However, both similarity and relatedness are
improved compared to textual embeddings by using a linear transformation,
which helps benefiting from vision while keeping the textual information pre-
served. Overall, the best results on all the datasets are achieved by the linear
mapping. This suggests that while visual information is beneficial for enhanc-
ing textual embeddings, giving too much emphasis to vision and neglecting
language is not the optimal approach. These findings support previous evidence
from case studies, as well as behavioral and neural studies, which suggest that
abstract and concrete words are processed differently and involve distinct but
overlapping brain regions (see Montefinese, 2019; Mkrtychian et al, 2019, for
reviews). Therefore, it is crucial to strike a balance between concreteness and
abstractness, which are represented in our experiments by visual properties of
images and statistics of textual corpora respectively. Language seems to bene-
fit from vision the most when it is aligned/informed with vision as opposed to
being completely fused together. As the first step, various scenarios in which
visual information could enhance textual word vectors are explored. In other
words, we are interested to see whether increasing the influence of images on
word vectors results in better grounded word vectors. For this aim, we train
our model (ZSG-G) with different activation functions for the mapping M .
Using a non-linear activation function such as ReLU and Leaky-ReLU (Xu
et al, 2015) and adding more non-linear layers will allow the model to drasti-
cally deform the textual vector-space beyond linear transformations, increasing
the influence of images on grounded word vectors. Table 4 shows the results
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with different numbers of layers and non-linear activation functions. We mea-
sure similarity and relatedness by evaluating on MTurk771 and SimLex999, as
they are compiled for similarity and relatedness respectively. Leveraging from
different categories in SimLex999, we also evaluate on highly abstract and
highly concrete words. Furthermore, for each case, we evaluate the obtained
word vectors on all of the available datasets mentioned in Table 1. As shown
in Table 4, we observe a consistent pattern of losing abstractness and gaining
concreteness when non-linear transformations are used. This is to be expected,
since word vectors are morphing into image vectors and hence gain concrete
properties. Employing two consecutive Leaky-ReLU is a prominent example
of this case. Results on similarity and relatedness show that visual grounding
shifts the focus toward similarity (see also Figure 1). However, both similar-
ity and relatedness are improved compared to textual embeddings by using
a linear transformation, which helps benefiting from vision while keeping the
textual information preserved. Overall, the best results on all the datasets are
achieved by the linear mapping. This suggests that while visual information
is beneficial for enhancing textual embeddings, giving too much emphasis to
vision and neglecting language is not the optimal approach. These findings
support previous evidence from case studies, as well as behavioral and neural
studies, which suggest that abstract and concrete words are processed dif-
ferently and involve distinct but overlapping brain regions (see Montefinese,
2019; Mkrtychian et al, 2019, for reviews). Therefore, it is crucial to strike
a balance between concreteness and abstractness, which are represented in
our experiments by visual properties of images and statistics of textual cor-
pora respectively. Language seems to benefit from vision the most when it is
aligned/informed with vision as opposed to being completely fused together.

Type-Act.(No. of Layers) Relatedness Similarity Abstract Concrete All
Textual GloVe 71.5 43.3 43.3 40.2 56.7
Grounded-Linear(1) 73.2 52.6 54.6 59.2 63.6
Grounded-ReLU(1) 69.2 50.1 49.4 60.5 59.7
Grounded-Leaky-ReLU(1) 73.0 53.9 52.8 61.7 63.0
Grounded-Leaky-ReLU(2) 71.3 52.4 49.6 64.6 61.7

Table 4: The impact of various activation functions and the number of lay-
ers used for the mapping M . on-linear transformations led to a reduction in
abstract knowledge and an increase in concreteness. The term “All” refers to
the average score across all datasets listed in Table 1.

6 Bridging the Gap Between Language and
Vision

While our model is relatively simple compared to many others (Shahmoham-
madi et al, 2021; Kiros et al, 2018; Kiela et al, 2018), there are alternative
approaches that use even simpler methods to integrate language with vision
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(Collell Talleda et al, 2017; Günther et al, 2022; Hasegawa et al, 2017). This
raises the question of how to properly fill the gap between language and
vision. We therefore investigated different ways in which the part of our
model that bridges this gap can be engineered, and evaluated how well these
alternative implementations perform. We constructed the following scenarios.
In all the scenarios, similar as before, after the training, we use the trained
mapping M to map all the textual embeddings into the grounded space to
obtain grounded embeddings.

Word-Level (WL): For each training (caption, image vector) pair
(Sj , Ij) ∈ D, we remove the stop words in caption Sj and train a linear map-
ping M from each word to its corresponding image vector Ij . For instance,
the caption ‘there is a dog on the floor’ would be converted into ‘dog floor’.
Then, the textual embeddings of both dog and floor are mapped to their cor-
responding image one by one using only the mapping M . Similar to Günther
et al (2022), we employed PCA (Pearson, 1901) to match the dimensions of
the image vectors (2048) to the output of the mapping M (1024).

Bag-of-Words (BoW): For each training (caption, image vector) pair
(Sj , Ij) ∈ D, after mapping all the words in Sj into the grounded space using
a linear mapping here denoted again as M , we average them to obtain the
BoW sentence representation. The BoW vector is then mapped into the image
vector Ij using a hidden layer with Tanh activation function. This approach
represents a more sophisticated method than the ’Word-Level’ model, as it
utilizes all words in the captions and incorporates a non-linear transforma-
tion, potentially leading to improved performance.

GRU: This set-up is very similar to our proposed model (see Section 2), and
differs in that a single-layer GRU (Cho et al, 2014a) is used instead of an
LSTM. A GRU is less complex compared to an LSTM and contains only a
hidden-state as opposed to the LSTM, which is equipped with both a cell-
state and a hidden-state.

LSTM: This refers to the model proposed in Section 2.

Transformer-Encoder (TE): Attention-based sequence encoders introduced
in Vaswani et al (2017) are currently used in state-of-the-art contextualized
language models (Lan et al, 2019; Devlin et al, 2018) and are applied to com-
plex downstream NLP tasks. We are interested in whether the utilization of
cutting-edge NLP techniques can enhance the capacity to capture human-
rated word similarity and relatedness. These encoders generate contextualized
embeddings based on the learnable associations between words, allowing for
the disambiguation of polysemous words in different contexts. For instance,
the word ‘clip’ has different senses in ‘I clip my nails’ and ‘I saw a video clip’.
To distinguish between these senses, contextualized representations of ‘clip’
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are therefore computed that are informed by its associations with the words in
a given context. For our experiments, we pass the textual embeddings of each
caption through the mapping M as before. Then we train a different number
of encoders on top of M . That is, the embeddings are passed through multiple
transformer encoders simultaneously. The output of the encoders is the con-
textualized representation of the given caption which is then projected to the
image vector through a linear layer. We constructed the transformer encoders
with 1024 hidden size, 16 attention heads and used NAdam with the learn-
ing of 0.0001 for training. For a comprehensive understanding of transformer
architecture, we highly recommend referring to the seminal work by Vaswani
et al (2017).

The results of each model configuration are reported in Table 5. Notably,
the Word-Level mapping fails to preserve a sufficient amount of textual
information, resulting in embeddings that are significantly distorted when
compared to text-only embeddings. As a consequence, these embeddings
demonstrate inferior performance across all datasets. We note here that a
single image is very rich in information and often is not well-described by
a single word. Furthermore, the relationship between language and vision
is not always linear or straightforward. For instance, many highly concrete
nouns and adjectives such as apple and red could be easily coupled with their
visual representations. In contrast, more abstract linguistic categories such as
prepositions and conceptual words establish their link to visual experiences
through intricate (not necessarily linear) statistical patterns embedded within
language.

While the BoW model does offer some improvement over the text-only
GloVe approach on certain datasets, its overall performance is relatively com-
parable. However, it is worth noting that the BoW model demonstrates
significant enhancement on the SimLex999 dataset, which evaluates word sim-
ilarity rather than relatedness. Conversely, its performance is weaker on the
MTurk771 dataset, which focuses on relatedness. The potential reason for
these fluctuations in performance is that the BoW representations do not
account for word order and, consequently, lose the temporal statistics of how
related words co-occur within their context (see Jones and Mewhort, 2007,
for embeddings jointly representing word meaning and word order). The uti-
lization of recurrent neural networks (specifically, GRU and LSTM models)
results in significantly improved performance. Of these two models, the LSTM
outperforms the GRU, which is unsurprising given its ability to effectively cap-
ture long-distance dependencies between words and encode the entirety of a
sentence.

However, training with a single transformer encoder fails to produce bet-
ter quality embeddings, perhaps unsurprisingly as these encoders are usually
stacked on top of each other to achieve the desired outcome (Vaswani et al,
2017). We therefore also tested models with two and three layers of TE.
While using a two-layer TE demonstrated improved performance, we did not
observe any further improvement with additional layers beyond that. We also
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employed multiple layers of LSTM and found that a single-layer LSTM pro-
duces the most favorable outcomes. While adding more layers typically results
in a more robust model, we contend that as the network grows deeper, there
is a decreased amount of visual knowledge that can be easily conveyed back
to the mapping M . In other words, the visual knowledge becomes distributed
across various layers, making it arduous to distill the information down into
a single layer. Recall that after the training we only use the mapping M
to obtain visually grounded representations. Consequently, a network that
effectively condenses information within M while accurately predicting image
vectors is highly desirable. In our experiments, we found that a single-layer
LSTM strikes the ideal balance between the degree of dependence on M and
producing high-quality image vectors.

In summary, our experiments in the last two sections aimed to apply com-
putational models to shed light on the question of how language and embodied
experiences (here crudely represented as images) might interact to shape our
comprehension of words. In our experiments, a linear transformation in isola-
tion is not adequate for establishing a strong connection between vision and
language. In order to obtain high-quality visually grounded embeddings, it
is imperative to incorporate a non-linear transformation. Furthermore, it is
essential to carefully calibrate the semantic space of the textual embeddings
to accurately capture the perceptual knowledge present in images. Allowing
too much influence from the visual modality may lead to distortion of the tex-
tual embeddings, emphasizing the importance of striking a delicate balance
between the two modalities. This finding suggests that also the human mind
integrates information from vision in its semantic system, but that this system
is not dominated by visual similarities. It is worth noting that philosophers
such as Kant, Husserl, and Merseau-Ponty have pointed out that we do not
perceive the world as it truly is, our perceptions are shaped by our senses,
the constraints imposed by the world on our survival, and our cultures (see,
e.g., Kant et al, 1781/1999; Husserl, 1913; Merleau-Ponty et al, 2013). A very
similar point was made more recently from the perspective of the cognition of
vision by Hoffman (2019). The way in which we implement visual grounding
— constraining the extent to which vision can change embeddings from human
texts — does justice, however crude, to this fundamental insight.

7 Contextualized Visual Grounding

While we successfully showed the benefit of visual grounding for word embed-
dings on a wide range of intrinsic tasks, it remains a topic of debate as to
whether visual grounding provides benefits for state-of-the-art NLP models on
sentence-level language tasks (Yun et al, 2021; Iki and Aizawa, 2021; Tan and
Bansal, 2020). While some recent approaches have reported minor improve-
ments through the use of visually grounded models (Sileo, 2021), there is a
growing consensus that these models, such as VL-BERT (Su et al, 2019), do
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Model RW MEN WSim MTurk SimVerb SimLex Mean
353 771 3500 999

GloVe 45.5 80.5 73.8 71.5 28.3 40.8 56.7
WL 27.7 49.7 34.2 31.7 7.10 1.50 25.3
BoW 46.5 75.2 73.8 60.1 33.8 46.0 55.9
GRU 51.2 83.0 75.1 71.3 36.9 48.3 60.1
LSTM 53.4 85.1 78.8 73.2 38.5 52.6 63.6
1-layer-TE 44.0 77.4 62.9 67.0 25.5 37.5 52.9
2-layer-TE 50.1 82.6 75.3 72.2 32.4 45.6 59.7
3-layer-TE 50.0 82.0 72.7 72.2 33.0 46.8 59.4

Table 5: Evaluation of various textual encoders reveals a consistent improve-
ment in performance from the most simplistic approach (WL) to the utilization
of an LSTM model. However, In light of our experimental results, it appears
that transformer-encoders may not be particularly well-suited for generating
visually grounded word embeddings.

Fig. 5: We construct a visually grounded version of BERT using image-caption
pairs. In the training phase, the frozen pre-trained BERT encodes the caption,
and an alignment M followed by an LSTM layer on top of BERT is trained to
predict the corresponding image vector. In the fine-tuning phase, the learned
alignment M is attached on top of BERT followed by a classifier. This align-
ment ensures that the BERT representations are guided by the learned visual
alignment during fine-tuning.

not provide significant benefits for language tasks. In fact, there is concern
that these models may distort the linguistic knowledge acquired from tex-
tual corpora and hinder their effectiveness for natural language understanding
tasks (Tan and Bansal, 2020; Yun et al, 2021) and modeling abstract concepts
(Pezzelle et al, 2021). Currently, transformers have achieved state-of-the-art
performance on a wide range of downstream NLP tasks. Transformers are
a type of deep contextualized language model that typically operate using
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stacked attention layers. These models are capable of capturing long-range
dependencies in language by attending to relevant words in the input sequence
at each layer, allowing them to achieve impressive performance on a variety
of NLP tasks (Vaswani et al, 2017) (briefly explained in Section 6). Many of
these models, such as BERT (Devlin et al, 2018), undergo a two-phase pro-
cess, consisting of pretraining and fine-tuning. During pretraining, the model
is trained on a masked language modeling task, whereby certain tokens within
the input sequence are masked, and the model is trained to predict the masked
tokens. This process enables the model to acquire a deep understanding of
the underlying linguistic structure of the language, including its syntax and
semantics. In the subsequent fine-tuning phase, the pretrained model is further
optimized for performance on downstream tasks, such as sentiment classifica-
tion (Socher et al, 2013) and paraphrase detection (Dolan and Brockett, 2005).
By fine-tuning the model on these specific tasks, it can be tailored to achieve
state-of-the-art results, leveraging the powerful contextualization capabilities
of the Transformer architecture. For instance, in the case of sentiment classifi-
cation, a new multi-layer perceptron (MLP) could be appended to the encoded
output of the main model to generate a binary decision for a given sentence.
The parameters of both the added MLP and the pretrained model can then be
fine-tuned using the available training data for sentiment classification. With
the abundance of training data, the vast amount of textual context, and the
powerful capabilities of the Transformer architecture, one could argue that
visual grounding does not offer any additional information for solving current
NLP tasks (Tan and Bansal, 2020).

Despite the arguments against the necessity of visual grounding for
transformer-based language models, we are curious about the potential benefits
of our simple grounding approach. To explore this possibility, we incorpo-
rated our approach with BERT (Devlin et al, 2018), one of the pioneering
transformer models for sentence-level natural language understanding tasks.
BERT has been pre-trained on a vast corpus of English text, including English
Wikipedia9 and BookCorpus (Zhu et al, 2015), a collection of 11,038 unpub-
lished books. We carry out new experiments to compare the performance of
visually grounded BERT and purely textual BERT on sentence-level NLP
tasks. To clarify, in our baseline model, fixed FastText or GloVe vectors serve
as the input to the M mapping. However, in our new model, these vec-
tors are replaced by vectors generated through BERT encoding. The BERT
encoder marks the beginning and end of the input with ‘[cls]’ and ‘[sep]’
tokens (as shown in Figure 5) and outputs a fixed-dimensional vector for
each token. Therefore, we can treat it as a word-embedding model. Given a
sentence (Sj = [w1, w2, · · · , wn]) with n words, the BERT encoder outputs
(Tj = [t1, t2, · · · , tn]), where ti represents the contextualized encoding of the
word wi.

When used for classification tasks, the BERT engine is coupled with a
multi-layer-perceptron network generating the final output. As shown in

9https://en.wikipedia.org/wiki/English Wikipedia

https://en.wikipedia.org/wiki/English_Wikipedia


Springer Nature 2021 LATEX template

26 Language with Vision: a Study on Grounded Word and Sentence Embeddings

Figure 5, similar to our proposed model, we train a linear mapping M fol-
lowed by an LSTM encoder to predict an image vector given its caption.
After the training phase (see the lower box), for each classification task,
the pre-trained model has to be fine-tuned. For this step, an MLP is added
on top of the mapping M for fine-tuning on the downstream task (see the
upper box). In the fine-tuning phase, the ‘[cls]’ tokens encode the given input
through multiple attention layers and the rest of the tokens are discarded
(Devlin et al, 2018). In a nutshell, our approach adds the learned alignment
M between the pre-trained BERT encoder and its classifier. This alignment
is applied to the BERT encoding to align its final representation to vision
without deteriorating its textual information.

Evaluation: We fine-tuned and evaluated our pre-trained grounded BERT
on the General Language Understanding Evaluation (GLUE) benchmark10

(Wang et al, 2018) implemented in the Huggingface11 library (Wolf et al,
2019). GLUE is widely regarded as a comprehensive evaluation suite for natu-
ral language understanding models that reflect a wide range of the complexity
and diversity of human language comprehension. It consists of nine natural
language understanding tasks: single-sentence tasks, SST-2 (Socher et al,
2013) and CoLA (Warstadt et al, 2019); paraphrasing and similarity tasks,
MRPC (Dolan and Brockett, 2005), QQP12, and STS-B (Cer et al, 2017);
natural language inference tasks, RTE (Wang et al, 2018), QNLI (Rajpurkar
et al, 2016), MNLI (Williams et al, 2017), and WNLI (Levesque et al, 2012).
In what follows, we briefly explain the GLUE tasks used in our experiments.

SST-2:The Stanford Sentiment Treebank compiles a set of sentiment annota-
tions from movie reviews. It includes a total of 215,154 phrases each annotated
by 3 human annotators. Each sample is assigned to one of the following five
labels: neutral, slightly neutral, moderately positive, or positive. SST-5 or
SST fine-grained refers to the corpus with all 5 labels. SST-2 however con-
sists of binary labels only. The Negative class indicates negative or slightly
negative and the positive class indicates somewhat positive or positive. The
neutral sentences are discarded in SST-2 resulting in 70,042 overall samples.
Examples of positive and negative sentences are ‘that loves its characters and
communicates something rather beautiful about human nature’ and ‘that ’s
far too tragic to merit such superficial treatment’ accordingly.

CoLA: The Corpus of Linguistic Acceptability is an English acceptability
evaluation dataset. It consists of 10,657 sentences from 23 linguistics publica-
tions, expertly annotated for acceptability (grammaticality) by their original
authors into positive and negative classes. Some negative examples are: ‘The
professor talked us’, ‘They made him to exhaustion’, and ‘The witch went into
the forest by vanishing’.

10https://gluebenchmark.com/
11https://huggingface.co/
12https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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MRPC: The Microsoft Research Paraphrase Corpus is a set of sentence pairs
retrieved from online news sources. MRPC includes 5801 sentence pairs, each
labeled by human judges as to whether the pair constitutes a paraphrase. This
task is also known as paraphrase detection. Examples from this dataset are,
positive: (‘About 130,000 U.S. troops remain in Iraq , with others deployed
in Afghanistan , South Korea and elsewhere.’, ‘About 130,000 US soldiers
remain in Iraq , with others serving in Afghanistan, South Korea , Japan ,
Germany and elsewhere.’ ); negative: (‘The Embraer jets are scheduled to be
delivered by September 2006.’, ‘The Bombardier and Embraer aircraft will be
delivered to U.S. Airways by September 2006.’ ).

QQP: The Quora Question Pairs, is a collection of question pairs from the
question-answering website Quora. The task is identical to that of MRPC. the
QQP, however, is much larger, it compiles a set of 400k question pairs each
with a binary label indicating the semantic equivalence of the question pair.

STS-B: The Semantic Textual Similarity Benchmark is a set of sentence pairs
compiled from captions for videos and images, natural language inference
data, and news headlines. It consists of 8628 sentence pairs with each pair
annotated by humans with a similarity score ranging from 1 to 5. The task
is to predict the similarity score of a given pair as a real-valued number. For
example, (‘A woman is dancing.’, ‘A man is talking’ ) has a score of 0 and (‘A
small dog is chasing a yoga ball’, ‘A dog is chasing a ball’ ) has a score of 4.

RTE: Recognizing Textual Entailment is the task of modeling a directional
relation between two sentences. The relation holds whenever the truth of the
second sentence is entailed by the first one. For instance, ‘a dog is jumping
for a Frisbee in the snow’ entails ‘An animal is outside in the cold weather,
playing with a plastic toy.’ but contradicts ‘a cat washed his face and whiskers
with his front paw.’. The RTE dataset consists of 5767 pairs, extracted from
news and Wikipedia text, each with a binary label.

QNLI: The Stanford Question Answering Dataset consists of question-
paragraph pairs. One of the sentences in the paragraph (drawn from
Wikipedia) contains the answer to the question in the given sample. Ques-
tions are written by human annotators. To convert this task into a sentence
pair classification one, Wang et al (2018) constructed a pair between each
question and each sentence in the corresponding paragraph, and discarded
pairs with low lexical overlap between the question and the context (para-
graph) sentence. The task is to predict whether the context sentence contains
the answer to the question. This dataset contains 115,699 question-sentence
pairs each annotated with a binary label. Examples from this dataset are,
positive: (‘When is the term ’German dialects’ used in regard to the German
language?’, ‘When talking about the German language, the term German



Springer Nature 2021 LATEX template

28 Language with Vision: a Study on Grounded Word and Sentence Embeddings

dialects is only used for the traditional regional varieties.’ ), negative: (‘In
what century was the church established at the location?’, ‘Construction of the
present church began in 1245, on the orders of King Henry III.’ )

MNLI: The Multi-Genre Natural Language Inference is a dataset of 431,992
sentence pairs with entailment annotations. Given a pair of premise-hypothesis
sentences, the task is to predict whether the premise entails the hypothesis
(entailment), contradicts the hypothesis (contradiction), or neither (neutral).
The premise sentences are gathered from different sources including govern-
ment reports, transcribed speech, and fiction. There are two versions of the
validation set, matched and mismatched. The former contains samples in the
same domain as in the training set while the latter contains cross-domain
samples. We evaluate our model on both sets.

Implementation Details: We used the bert-base-cased version of BERT
(Devlin et al, 2018) in our experiments. ‘base’ refers to the size of the model
in terms of the number of training parameters. There are three versions of
BERT: small, base, and large; ‘cased’ indicates that the model distinguishes
between upper-cased and lower-cased letters. For training, we used the
Microsoft COCO 2017 dataset (Lin et al, 2014). The alignment M maps a
BERT token ti ∈ R768 to gi ∈ R1024. Each LSTM layer contains 1024 units.
A single-layer neural network with a linear activation function (a linear layer)
is applied on top of the LSTM to predict the image vector Ij ∈ R2048. We
trained the model on image-caption pairs for 10 epochs using the AdamW
optimizer (Loshchilov and Hutter, 2017) with the learning rate set to 5e−5

and a batch size of 64. For fine-tuning on the GLUE benchmark, we followed
the huggingface guidelines13 and fine-tuned the model on each downstream
task for 5 epochs with a batch size of 32 and a learning rate of 2e−5.

Results: Table 6 reports the validation scores across the GLUE datasets. The
WNLI dataset was excluded from the list following Devlin et al (2018) due to
inconsistent results. We carried out our grounding experiments with different
numbers of LSTM layers. In Table 6, n-LFM-GBERT indicates the grounded
BERT with n layers of LSTMs and frozen (weights are kept unchanged during
training) mapping M while fine-tuning on downstream tasks. The idea behind
freezing the mapping (alignment) M while fine-tuning the BERT encoder
and the classifier on a particular task is to guide (force) the output repre-
sentations of BERT to follow the visual alignment. This might then guide
the model to a better feature space for solving the task. Considering the
mean score, the grounded model with 2-layer-LSTMs (2-LFM-GBERT ) out-
performs the textual BERT by almost 1%, highlighting the potential benefits
of visual grounding. Moreover, we also fine-tuned the alignment M of the best

13https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-
classification
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Model/Data CoLA MRPC QNLI QQP RTE SST-2 MNLI STS-B Mean Score
Train Size (K) 8.5 3.6 104 364 2.5 67 392 5.7 -
Textual-BERT 59.05 84.31/89.15 91.08 90.76/87.53 67.15 91.2 83.34/83.83 87.13/87.00 81.74
1-LFM-GBERT 60.07 84.31/89.11 91.00 90.82/87.63 63.54 92.43 83.86/83.52 88.83/88.49 81.86
2-LFM-GBERT 61.58 85.29/89.58 91.47 90.71/87.44 67.15 92.09 83.78/83.66 88.44/88.04 82.56
3-LFM-GBERT 60.62 84.56/89.44 90.92 90.70/87.46 68.23 92.32 83.84/83.48 88.02/87.67 82.40
2-LTM-GBERT 61.62 86.27/90.51 91.12 90.73/87.46 67.15 92.20 83.73/83.71 89.12/88.74 82.74

Table 6: Validation scores on the GLUE benchmark using textual BERT and
visually grounded BERT (* GBERT ). Visual grounding seems to improve the
generalization of the model when training data is limited (e.g., MRPC and
CoLA). However, large volumes of training data compensate for visual ground-
ing (see the scores of QQP and MNLI). accuracy/F1 scores are reported for
QQP and MRPC, Pearson/Spearman correlations are reported for STS-B, and
accuracies for matched/mismatched sets are reported for MNLI. For the other
tasks, accuracy is reported. Numbers in bold indicate obvious improvements
over textual BERT.

Model/Data CoLA MRPC QNLI QQP RTE SST-2 MNLI STS-B Mean Score
Textual-BERT 73.92 68.38/81.22 52.48 63.18/00.00 52.35 82.34 36.40 22.70/09.78 56.47
Grounded-BERT 77.85 68.38/81.22 54.42 67.21/48.63 48.38 85.55 42.25 47.80/47.29 61.48

Table 7: Validation scores on the GLUE benchmark by employing a linear
probe on textual BERT and visually grounded BERT. The visually grounded
vector space provides richer semantic representations, leading to improved lan-
guage understanding on a majority of the tasks. Numbers in bold indicate
significant differences in performance (p values < 0.05).

model (2-LFM-GBERT ) for each particular task along with BERT encoder
and the classifier, denoted as 2-LTM-GBERT, this model further improves
the results. Although the improvements achieved through visual grounding in
our experiments are marginal compared to those obtained through grounded
word embeddings, the results presented in the table provide valuable insights.
Notably, for datasets with limited training data, such as CoLA and MRPC,
visual grounding appears to provide an advantage, as indicated by the bold
numbers in the table. However, for larger datasets such as QQP and MNLI,
the results are almost identical for both grounded and textual BERT models.
These findings suggest that visual grounding improves the generalization of
transformers when training data is limited. Nonetheless, they also demonstrate
that a substantial amount of textual training data, combined with meticulous
fine-tuning of models, can compensate for the relatively simple visual ground-
ing approaches used in our study when tested on the GLUE benchmark. In
accordance with our prior word embeddings experiments, we conducted a t-
test comparing the results of textual BERT to those of Grounded BERT, more
specifically 2-LTM-GBERT. The statistical test indicated that the observed
enhancements in performance were not statistically significant. Nevertheless,
when compared to the process of human language acquisition, these textual
language models exhibit significant inefficiencies, requiring exposure to vast
amounts of training data and computational resources to achieve satisfactory



Springer Nature 2021 LATEX template

30 Language with Vision: a Study on Grounded Word and Sentence Embeddings

results (Strubell et al, 2019). The BERT model for instance, despite being pre-
trained on an extensive corpus of over 3 billion tokens, still requires meticulous
fine-tuning for each individual task, which raises doubts about the efficacy of
large language models and the potential usefulness of visual grounding in this
regard.

In light of these concerns, we conducted an investigation to determine
whether fine-tuning the model would obscure improvements in the overall qual-
ity of embeddings due to visual grounding. In other words, fine-tuning the
models might diminish the differences between them, as the learned parameters
are tailored to the specific downstream task, potentially obscuring the bene-
fits of visual grounding. For this aim, we designed a new experiment whereby
we skipped the fine-tuning phase and conducted a comparative analysis of
the semantic spaces of Textual BERT and Grounded BERT models. Despite
the adverse impact of skipping fine-tuning on the results, this experimental
approach enables us to juxtapose the semantic space of the two models more
accurately and identify potential subtle differences between them, with a par-
ticular focus on the influence of visual grounding. To compare the semantic
space of Grounded BERT and Textual BERT for each specific task within the
GLUE benchmark, we employ a technique called linear probing. In this tech-
nique, only a linear classifier such as logistic regression is trained on top of
pre-trained representations of a model, in order to measure the quality of the
learned representations for particular downstream tasks (Reif et al, 2019). For
tasks involving pairs of sentences, a linear probe is trained with the cosine
similarity between the representations of the two sentences. For instance, con-
sider the task of paraphrase detection using the MRPC dataset, which involves
predicting whether a given pair of sentences are semantically equivalent. In
our probing setup, the two sentences, s1 and s2, are first encoded separately
by Grounded BERT and Textual BERT, resulting in two vectors, v1 and v2,
representing each sentence. We then determine the semantic similarity of the
two sentences by calculating the cosine similarity between the two vectors:
score(v1, v2) = 1− v1.v2

∥v1∥∥v2∥ . After encoding the sentences and calculating cosine

similarities between the two vectors, a logistic regression model (the probe) is
trained using the cosine similarities as inputs and binary classification labels as
outputs. Following training, the trained linear probe is applied to predict the
labels of the validation set. The rest of the evaluation procedure is identical to
the previous section. If one of the models’ representations is better suited for
this task, we expect to observe higher performance, indicating better classifica-
tion boundaries and more refined clusters in the semantic space of the model.

The evaluation results of probing are reported in Table 7. Grounded
BERT demonstrates significant improvements over textual BERT leading to
the enhancement of the mean score by 5%. This shows that visual ground-
ing enriches language representations across a wide range of abstract language
understanding tasks. Surprisingly, the accuracy on CoLA dataset, is higher
than when the whole model is fine-tuned (see Tabel 6). This might be due
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to the nature of the task. Since negative samples contain ungrammatical sen-
tences, they might inherently be well separated from correctly grammatical
sentences in the vector space. Hence, fine-tuning the parameters of BERT with
a small set of ungrammatical sentences might be detrimental to model perfor-
mance. This further confirms the inefficiencies of large language models and
their need to devour a huge amount of annotated data to achieve desirable
performance. We further performed a t-test between the prediction of the two
models, exhibiting statistically significant differences between the performance
of the two models on the majority of the tasks. Bold numbers in Table 7
indicate p values < 0.05.

Overall, these insights highlight the potential of visual grounding even for
highly advanced NLP techniques. Our findings suggest that visual grounding
has the potential to learn task-agnostic language representations, leading to
reduced computational costs and textual resources. This paves the way for
future research on building cognitively plausible language learning frameworks
where the learning process leverages different modalities such as visual cues
and gestures (Smith and Gasser, 2005; Iverson and Goldin-Meadow, 2005),
making the learning both effective and cognitively plausible.

8 Grounding for smaller datasets

Thus far, our grounding approach has been shown to be effective in conjunc-
tion with pre-trained word embedding models and advanced sentence-level
language models, when training data for a given downstream task is scarce.
In both cases, however, large amounts of textual training data from differ-
ent domains have been utilized. The amount of training data plays a big role
in shaping performance on downstream tasks (Beltagy et al, 2019; Lee et al,
2020), and in general is an important determinant of the quality of indus-
trial word embeddings (Wang et al, 2019; Elekes et al, 2018; Johns and Jones,
2022). This section details two concluding experiments that address the ques-
tion of whether visual grounding is also beneficial for embeddings calculated
from much more modest training data. As human lexical acquisition develops
rapidly on the basis of restricted amounts of training data, a solid improvement
due to visual grounding even under limited exposure would provide support
for the possibility that human learning also benefits from visual grounding.

We, therefore, trained the GloVe model from scratch on two small and
different training corpora and measured the improvements of our grounding
approach on each corpus using the word similarity benchmarks (see section 4).
Initially, we obtained textual embeddings by training on two distinct corpora:
TASA and Text8. TASA (Zeno et al, 1995) has served as a training corpus
for, e.g., Latent Semantic Analysis (Landauer, 1999). Text8 is a small corpus
sampled from Wikipedia to allow quick testing of language models.14 Our best
grounding model (see Section 2) is then applied to the textual embeddings to
obtain visually grounded embeddings. Table 8 reports the comparison between

14https://cs.fit.edu/∼mmahoney/compression/textdata.html

https://cs.fit.edu/~mmahoney/compression/textdata.html
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textual embeddings and grounded embeddings for both corpora. Our grounded
approach (TASA-G and Text8-G) consistently improves on top of textual
embeddings (TASA-T and Text8-T) despite the small size of these corpora and
the very different nature of the training corpora.We further confirmed the sta-
tistical significance (p ≤ 0.0008) of the performance improvements observed by
conducting t-tests on both datasets. The robustness of our grounding method
for word-based embeddings holds not only across a wide range of tasks, but
also for different amounts of training data, providing a firm basis for expect-
ing grounded embeddings to provide improved precision to studies of human
cognition that make use of embeddings.

Model RW MEN WSim MTurk SimVerb SimLex Mean
353 771 3500 999

TASA-T 2.4 37.2 33.1 35 8.5 10.8 21.7
TASA-G 6.7 42.5 37.1 37.5 13.1 17.1 25.7
Text8-T 8.1 47.9 45.9 45 8.3 16.6 28.63
Text8-G 13.5 51.2 51.8 49.1 10.5 20.7 32.8

Table 8: Comparison of our grounded embeddings (*-G) to textual embed-
dings (*-T) on limited training data. GloVe algorithm was trained on TASA
and Text8 corpus separately from scratch. Significant improvements are
achieved by visual grounding despite limited training data. Numbers in bold
indicate significant differences in performance (p values ≤ 0.0008, t-tests).

9 Discussion and Conclusion

In this study, we designed a visual grounding framework that effectively
produces visually grounded word representations for all types of words from
different kinds of embeddings. Our approach, apart from its simplicity, shows
excellent generalization, as evidenced by its success on a variety of human-
annotated similarity and relatedness tasks, including those involving unseen
abstract and concrete words. We have made both the grounded embeddings
and our framework publicly available. We further designed a series of experi-
ments to shed light on the following research questions.

Visual grounding for abstract words: Our approach employs a visual
grounding pathway that is acquired during the process of grounding concrete
words, which enables the indirect grounding of abstract concepts. Our study’s
results lend support to the indirect grounding theory, which posits that con-
crete words are directly grounded while abstract words are indirectly grounded
through language (Howell et al, 2005; Louwerse, 2011; Hoffman et al, 2018).
Despite being trained on image captions within which concrete nouns far out-
number abstract nouns, our approach produces more refined clusters of both
concrete and abstract words, highlighting the framework’s ability to capture
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the subtle nuances in the semantics of different word types across a wide range
of human-annotated word collections.

Bridging language to vision: We investigated various strategies of bridg-
ing language (here crudely represented as word/sentence embeddings) with
vision. Our experiments support the following conclusions.

First, textual word embeddings benefit from vision the most when they
are aligned with vision as opposed to being merged. Our alignment strategy
enables the textual embeddings to incorporate real-world knowledge through
images without compromising the statistical knowledge gained from textual
corpora. We showed by example that allowing too much visual information will
overwhelm the textual embeddings. Injecting too much visual knowledge into
the embeddings benefits concrete words while diminishing the performance
on modeling abstract words. This trade-off may be due to the distinct cog-
nitive processing of abstract and concrete words, which engage overlapping
but separate brain regions (see Montefinese, 2019; Mkrtychian et al, 2019, for
reviews). Therefore, the right balance between concreteness and abstractedness
represented in our experiments by visual properties of images and statistics of
textual corpora is vital.

Our second key finding is that textual context plays an important role
in grounding isolated word embeddings. Our results demonstrate that linking
word embeddings with vision in the absence of textual context leads to a sig-
nificant distortion of the semantic space. We believe one reason is that word
vectors still need to be aware of the textual context they occur in when they are
being coupled with their corresponding visual information in images. Moreover,
given that images are a highly complex and rich source of information, a single
word cannot capture their full semantic richness. Our grounding framework,
therefore, aligns word vectors with their corresponding images while simulta-
neously preserving information about their textual context, thereby enhancing
the overall efficacy of the grounding process.
Benefits and upper bound of visual grounding: Our study has demon-
strated that visual grounding is highly advantageous for both concrete and
abstract words. However, our analyses have also revealed that visual ground-
ing is particularly beneficial in cases where textual embeddings struggle, such
as when modeling highly abstract verbs or rare words. Conversely, in bench-
marks consisting mostly of concrete words, the improvement from grounding
is less pronounced. These findings dovetail well with the observation that the
meanings of concrete words are more stable and reliable compared to those of
abstract words across different textual word embeddings (Pierrejean and Tan-
guy, 2019).

It has been shown that infants’ ability for processing abstract words
emerges later after they have established a solid grounding in concrete concepts
(Bergelson and Swingley, 2013, 2012). Furthermore, many abstract concepts
build on metaphors that themselves are rooted in concrete experiences (Lakoff
and Johnson, 1980; Langacker, 1987). This finding suggests a possible high-
level explanation of why abstract words benefit from visual grounding of
concrete words: Abstract words are scaffolded on the foundations of concrete
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words. Visual grounding contributes to a more precise approximation of these
foundations, and this in turn enables a recalibration of the superstructure of
abstract words. Our findings thus pave the way for future research on whether
visual grounding alleviates the instability problem of abstract concepts (Pier-
rejean and Tanguy, 2019).

Visual grounding and corpus size: The embeddings used in current
NLP are derived from corpora comprising billions of words. An examina-
tion of the extent to which visual grounding helps improve state-of-the-art
sentence-level NLP models built on such huge resources revealed only modest
improvements. Specifically, a comparison of a visually grounded version of the
well-known BERT model (Devlin et al, 2018) with a standard textual version
of BERT on common evaluation benchmarks showed that visual grounding
yields considerable improvements only when training data is limited. However,
when using large volumes of textual data and meticulous parameter-tuning,
the performance of the visually grounded and textual models becomes almost
identical. Apparently, huge volumes of textual context in combination with
subsequent powerful fine-tuning algorithms compensate for visual grounding,
at least on current downstream NLP tasks.

Although visual grounding is not necessary for language models that have
access to volumes of data that far surpass what individual speakers can ever
encounter, we have shown that when embeddings are trained on small corpora,
visual grounding leads to substantial improvements.

Since we as humans are never exposed to the amount of textual data
digested by current language models, but still master our first language at a
very early age, enriching current models for lexical semantics with vision is
a first step forward in the direction of developing cognitively more plausible
representations for word meaning.
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